LP REGENERATIVE PREHEATERS ## **FAMET S.A.** ul. Szkolna 15A 47-225 Kędzierzyn-Koźle POLAND www.famet.com.pl e-mail: office@famet.com.pl 06-2017 ## PRODUCT **OFFER** The **Low Pressure (LP) regenerative preheaters** are used in low pressure heat recovery system to heat up the condensate to temperature resulting from the turbine heat balance and required for correct condensate deaeration usually in Feed Water Tank. LP preheaters are installed and work horizontally. The steam condensate from the condenser flows in tube side, while heating steam extracted from the turbine is passed to the shell side. Non-condensed steam and inerts are extracted from the shell-side through perforated deaeration tube out of shell to the turbine condenser. The additional condensate subcooler is installed in bottom parts of the shell side. Condensate level in subcooling zone is controlled by use of level controller and control valves on condensate outlet line from preheater. Design of subcooling zone depends on condensate amount and preheater size. To increase of turbulence condensate flow and the subcooling efficiency the grid baffles are installed. The **LP preheaters** are shell & tube exchanger with U-tubes, in-full welded design, equipped with removable covers or manholes on condensate inlet chambers for maintenance and service. The tubes are fixed into tubesheet by expanding or expanding and seal welding. The materials selection is to Client requirements. The U-tubes usually are made from SS steel. Other parts of heater are made from boiler carbon steel. **To design these heaters,** Famet uses ASPEN/HTRI and HEI softwares. **Documentation** is made in accordance with PED 2014/68/EC, UDT, ASME or AD 2000 Code. There is also possible to fabricate LP heaters according to Client documentation. The **reference list for LP heaters** designed and fabricated by FAMET are to be found on **www.famet.com.pl** POLAND ## **EXEMPLARY DELIVERIES** LP REGENERATIVE PREHEATERS | End User Company Name | Year | Quantity
[pcs] | Name | Temp.
[°C] | Pressure
[bar] | Material | Weight
[kg] | Code
Inspection | |---|------|-------------------|---------------------------------|-------------------------------|--------------------|--------------------------------------|----------------------------|--------------------------------------| | Balcke Dürr GmbH / SPX
PGE, Power Plant Opole
Unit 5&6
POLAND | 2016 | 6 | LP1/2/3 Heater | 110/110 | 0.4/38 | SS/CS | 35 900 | PED + EN13445 | | HOLTEC International
PGE, Power Plant Opole
Unit 5&6
POLAND | 2016 | 2 | LP 5 Feedwater
Heater | 270/166 | 6/38 | SS/CS | 21 000 | PED + EN13445 | | HOLTEC International
PGE, Power Plant Opole
Unit 5&6
POLAND | 2016 | 2 | LP 4 Feedwater
Heater | 220/152 | 4/38 | SS/CS | 22 000 | PED + EN13445 | | HOLTEC International
PGE, Power Plant Opole
Unit 5&6
POLAND | 2016 | 2 | LP 3 Feedwater
Heater | 180/134 | 2/38 | SS/CS | 25 000 | PED + EN13445 | | SIEMENS Brno
Bielsko-Biała
POLAND | 2012 | 2 | LOW PRESSURE
HEATER LP1, LP2 | 170 / 220
170 / 220 | 24 / 7,5
24 / 6 | 13Cr
Mo45
+CS
+SS | 6 200
6 100 | PED + EN13445 | | ALSTOM POWER,
Termoelektrarna Sostanj
SLOVENIA | 2012 | 3 | LOW PRESSURE
HEATER LP | 190/134
240/152
290/171 | 49/-1 | CS+SS | 17 200
13 650
13 200 | PED + EN13445 | | ALSTOM POWER Power Plant ŁAGISZA POLAND | 2007 | 1 | LP Heater | 180/300 | 42/9 | CS, SS | 9.900 | PED+EN13445
UDT | | ALSTOM POWER Power Plant ŁAGISZA POLAND | 2007 | 1 | LP Heater | 170/210 | 42/5 | CS, SS | 11.500 | PED+EN13445
UDT | | ALSTOM POWER Power Plant ŁAGISZA POLAND | 2007 | 1 | LP Heater | 170/110 | 42/2 | CS, SS | 11.750 | PED+EN13445
UDT | | ALSTOM POWER Power Plant ŁAGISZA POLAND | 2007 | 1 | LP Heater | 170/100 | 42/2 | CS, SS | 13.250 | PED+EN13445
UDT | | Balcke-Dürr GmbH GERMANY
Siemens AG Power Generation
Framatome ANP for Nuclear
Power Plant OKILUOTO III
FINLAND | 2006 | 1 | LP Condensate
Cooler | 121/121 | 2/34 | SS/CS | 30/100 | PED 97/23/EC
+EN13445
Modul H1 | | Balcke-Dürr GmbH GERMANY
Siemens AG Power Generation
Framatome ANP for Nuclear
Power Plant OKILUOTO III
FINLAND | 2006 | 1 | LP Feedwater
Heater | 219/152 | 4/34 | SS/CS+
Cladding
/CS | 95.100 | PED 97/23/EC
+EN13445
Modul H1 | | Balcke-Dürr GmbH GERMANY
Siemens AG Power Generation
Framatome ANP for Nuclear
Power Plant OKILUOTO III
FINLAND | 2006 | 1 | LP Feedwater
Heater | 149/134 | 2/34 | SS/CS+
Cladding
/CS | 86.600 | PED 97/23/EC
+EN13445
Modul H1 | | Balcke-Dürr GmbH GERMANY
Siemens AG Power Generation
Framatome ANP for Nuclear
Power Plant OKILUOTO III
FINLAND | 2006 | 3 | LP Feedwater
Heater | 120/120 | 1/34 | Low alloy
/CS+
Cladding
/CS | 121.000 | PED 97/23/EC
+EN13445
Modul H1 | | ALSTOM POWER Power Plant PĄTNÓW POLAND | 2002 | i | ĹP | 280/160 | 8/63 | C-Steel
SS-Steel | 15.450 | UDT
UDT | | ALSTOM POWER Power Plant PĄTNÓW POLAND | 2002 | 1 | LP | 170/160 | 3/63 | C-Steel
SS-Steel | 17.970 | UDT
UDT | | ALSTOM POWER Power Plant PĄTNÓW POLAND | 2002 | 1 | LP | 120/160 | 2/63 | C-Steel
SS-Steel | 13.680 | UDT
UDT | | ALSTOM POWER Power Plant PĄTNÓW POLAND | 2002 | 2 | LP | 100/100 | 1/63 | C-Steel | 19.900 | UDT
UDT |